NO homeostasis is a key regulator of early nitrate perception and root elongation in maize*

نویسندگان

  • Alessandro Manoli
  • Maura Begheldo
  • Andrea Genre
  • Luisa Lanfranco
  • Sara Trevisan
  • Silvia Quaggiotti
چکیده

Crop plant development is strongly dependent on nitrogen availability in the soil and on the efficiency of its recruitment by roots. For this reason, the understanding of the molecular events underlying root adaptation to nitrogen fluctuations is a primary goal to develop biotechnological tools for sustainable agriculture. However, knowledge about molecular responses to nitrogen availability is derived mainly from the study of model species. Nitric oxide (NO) has been recently proposed to be implicated in plant responses to environmental stresses, but its exact role in the response of plants to nutritional stress is still under evaluation. In this work, the role of NO production by maize roots after nitrate perception was investigated by focusing on the regulation of transcription of genes involved in NO homeostasis and by measuring NO production in roots. Moreover, its involvement in the root growth response to nitrate was also investigated. The results provide evidence that NO is produced by nitrate reductase as an early response to nitrate supply and that the coordinated induction of non-symbiotic haemoglobins (nsHbs) could finely regulate the NO steady state. This mechanism seems to be implicated on the modulation of the root elongation in response to nitrate perception. Moreover, an improved agar-plate system for growing maize seedlings was developed. This system, which allows localized treatments to be performed on specific root portions, gave the opportunity to discern between localized and systemic effects of nitrate supply to roots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays.

BACKGROUND AND AIMS Root growth and development are closely dependent upon nitrate supply in the growth medium. To unravel the mechanism underlying dependence of root growth on nitrate, an examination was made of whether endogenous nitric oxide (NO) is involved in nitrate-dependent growth of primary roots in maize. METHODS Maize seedlings grown in varying concentrations of nitrate for 7 d wer...

متن کامل

Influence of inorganic nitrogen and pH on the elongation of maize seminal roots.

BACKGROUND AND AIMS Root absorption and assimilation of inorganic nitrogen usually alters rhizosphere pH, but the immediate influence of such pH changes on root elongation as well as that of exogenous inorganic nitrogen itself has been uncertain. METHODS A differential extensiometer that monitored on a real-time, continuous basis root elongation in an intact 3-d-old maize plant was developed....

متن کامل

Nitric Oxide-Mediated Maize Root Apex Responses to Nitrate are Regulated by Auxin and Strigolactones

Nitrate (NO3 (-)) is a key element for crop production but its levels in agricultural soils are limited. Plants have developed mechanisms to cope with these NO3 (-) fluctuations based on sensing nitrate at the root apex. Particularly, the transition zone (TZ) of root apex has been suggested as a signaling-response zone. This study dissects cellular and molecular mechanisms underlying NO3 (-) re...

متن کامل

Yield and nitrogen leaching in maize field under different nitrogen rates and partial root drying irrigation

Irrigation water is limiting for crop production in arid and semi-arid areas. Furthermore, excess nitrogen (N) application is a source of groundwater contamination. Partial root drying irrigation (PRD) can be used as water saving technique and a controlling measure of groundwater N contamination. The objectives of this investigation were to evaluate the effect of ordinary furrow irrigation (OFI...

متن کامل

Regulation of maize root growth by nitrogen nutrition

Response of root system architecture to nutrient availability in soils is an essential way for plants to adapt to soil environments. Nitrogen can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. On one hand, low soil N stimulate root elongation. On the other hand, localized nitrate stimulate lat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2014